Search results for "Anàlisi funcional"
showing 1 items of 1 documents
Signal-to-noise ratio in reproducing kernel Hilbert spaces
2018
This paper introduces the kernel signal-to-noise ratio (kSNR) for different machine learning and signal processing applications}. The kSNR seeks to maximize the signal variance while minimizing the estimated noise variance explicitly in a reproducing kernel Hilbert space (rkHs). The kSNR gives rise to considering complex signal-to-noise relations beyond additive noise models, and can be seen as a useful signal-to-noise regularizer for feature extraction and dimensionality reduction. We show that the kSNR generalizes kernel PCA (and other spectral dimensionality reduction methods), least squares SVM, and kernel ridge regression to deal with cases where signal and noise cannot be assumed inde…